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LIGHT-INDUCED DRIFT OF A ONE-COMPONENT G A S  I N  A 

F L A T  C H A N N E L  

V. G. Chernyak,  I. V. Chermyaninov, E. A. V'disova, 

and E. A. Subbotin UDC 533.72:535.21 

The phenomenon of bulk, light-induced drift (BLID), predicted in [1], consists in the fact that particles that are 

absorbing radiation in the form of a monochromatic traveling wave and are mixed with a buffer gas acquire directional motion. 

The possibility of BLID of a one-component gas under the condition that the excited and unexcited particles interact differently 

with the boundary surface - -  surface BLID --  was substantiated in [2]. This mechanism was used in [3] to estimate the BLID 

hydrodynamic regime in channels. 

Light-induced slippage of a one-component gas (a Knudsen layer) was calculated in [4, 5]. A new BLID mechanism 

was predicted, which can be called collisional, since it owes its existence to the difference between the coUisional cross sections 

of excited and unexcited particles. Collisional BLID is possible only in a confined gas. It is analogous, in a certain sense, 

to diffusional slippage of an isotopic gas mixture. This mechanism was used in [6] for a numerical calculation of velocity and 

heat-flux profiles in a flat channel for certain values of the determining parameters. 

In the present paper we give the results of a calculation of BLID for a one-component gas in a flat channel at arbitrary 

Knudsen numbers (Kn) with allowance for both the surface mechanism and the collisional mechanism. The main difficulty 

in such a calculation is associated With the need to solve the Boltzmann kinetic equation or models of it at intermediate Kn, 

which is the fundamental problem of the kinetic theory of gases. Here three methods are used to solve the kinetic equation 

with an approximating collision integral: the method of discrete ordinates, the integral-moment method, and the mixed 

integrodifferential-moment method. A comparison of the results obtained enables us to evaluate the efficacy of  each method. 

1. Statement of the Problem. Let us consider established motion of a one-comp0nent gas between parallel plates, 

located at X = +d/2,  under the action of resonant optical radiation propagating along the channel in the direction of  the Z axis. 

We assume the distance between the plates to be much less than their length and width, i.e., the gas's motion is one- 

dimensional. 

We confine ourselves to the model of two-level particles, with the lower level n corresponding to the ground state and 

the upper level m to the excited state. Let the radiation frequency o~ be close to the frequency COmn of the electron or 

vibrational-rotational m - n  transition. Owing to the Doppler effect, only particles with velocities close to the resonant velocity 

Vr, which satisfies the condition kv r = fl = r - -  O~mn (k is the wave vector), interact with the radiation. The particles that 

have absorbed radiation alter the transportive collisional cross section. The absorbing gas can then be treated as a binary gas 

mixture, the particles in which have the same mass and different collision cross sections. 

In this case, the distribution functions for excited (fro) and unexcited (fn) particles satisfy the system of two kinetic 
equations [7] 

al .  l 
3 ~  = i ~ ( ' , ) r - ( /o  - / - )  - r u - ,  + & '  

(1.1) 
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Pm is the frequency of radiative decay of the excited state; P is the uniform half-width of the absorption line; S m and S n are 

the Boltzmann collision integrals; E o is the amplitude of the electric field; dmn is a matrix element of  the dipole moment of 
the resonant n - m  transition; x(v z) is the saturation parameter, characterizing the probability of stimulated transitions (it is 

proportional to the radiation intensity I); h is Planck's constant. 
If  the probability of stimulated transitions is low, which occurs at low radiation intensities, then the states of the 

components of  the gas mixture are slightly out of equilibrium and the distribution functions can be written as small 

perturbations of Maxwellian distributions, 

L = Lo [1 + h,(X, v) l (i = n ,m) ,  

( m o  I aa ' 'no v2) (1.3) 
I,o = 

t ~ 
2kaT ) 

(nio is the equilibrium number density of the i-th component, T is the gas temperature, and k B is the Boltzmann constant). 

We assume that the interatomic collisions are elastic. Here each collision frequency 3'i = ')'ii + "/ij ('Yii and qqj are the 
effective frequencies of elastic collisions between particles of the i-th type and particles of the ith and jth types, respectively) 

are much higher than the frequency I'm of radiative decay, i.e., I~mi = Pm/Ti << 1. 
The kinetic equations (1.1), linearized with respect to the perturbation functions h i and the parameters I'mi, using 

second-order approximating collision integrals in McCormack's  form [8], after being made dimensionless take the form 

t / . 01,, 

(1.4) 
+ 4,.  - <," + - + h, I, . .  = ,,, m ,  * j,  

J 

where , ~ L/? 
x d 1 

I oi- 'r \ / 

,_z_. vt"~, , u f GEhf lc  ' 9!!" = u 
~1 }'t U 

Fix: f = r c Eh, dc. E = ~ - ~ ' ~ e x p ( -  c '  ;: 
g , x : -  7p, 

(1.5) 

Ui, Pixz, and Pi are the partial velocity, partial stress tensor, and partial pressure of the ith component, respectively; expressions 
for the frequencies v .(n) in terms of Chapman-Cowl ing  fl integrals have been given in [8]; &t is the rarefaction parameter, 

U 
inversely proportional to Kn. 

We confine ourselves to the consideration of elastic collisions of atoms with the surface and we use a specular-diffuse 

model of  the boundary conditions, in accordance with which a fraction e i of particles of the ith type are scattered diffusely by 
the channel walls while a fraction (1 - -  e i) are scattered specularly. The boundary conditions for the perturbation functions, 

linearized with allowance for (1.3), are written in the form 

h(x  = V 1 /2 ,  e ~ 0) = eye, + (I - e,)h,(x = T- 1 / 2 ,  c ~ 0). (1.6) 

Here Vir = (nir - -  nio)/nio is the perturbation of the number density nir of particles of the ith type scattered diffusely; e i is the 

fraction of diffusely scattered particles (era # e n in this case). 
If  the channel surfaces have the same accommodation properties, the following symmetry conditions are obvious: 

h,(x = -T 1 / 2 ,  G ~ 0) = h~(x -- - 1 / 2 ,  G ~ 0). (1.7) 

It is of  the greatest interest to calculate the macroscopic gas flux averaged over the chalmel cross section, which is 

determined by 
+1/2 

J = Jr,, + I = -V f (nu, ,  + n u,,,)dx. (1.8) 
-1/2 
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An important consequence of the assumption of a low probability of stimulated transitions is that the density of excited 

particles is much lower than the density of unexcited ones. One small parameter (nm/nn) << 1 has thus appeared in the theory. 

It is therefore appropriate to estimate all of the quantities in the kinetic equations (I .4) and to retain only those of  first order 

with respect to the small parameter nm/n n. 

If the excited and unexcited particles had the same collision cross sections and interacted in the same way with the 

channel surface, then BLID would be absent, i.e., 

. v  + , , u  = o. 

Moreover, from the law of  conservation of momentum it follows that the tensor of total shear-stress in the gas vanishes [see 

Eqs. (4.1) and (4.2)]: 

n ~ , ~  + n,~t,,~ = 0. 

It is thus obvious that 

I !  

( u ,  n,=~, h )  - ~ ' ( u , ,  n~ , ,  hm). 

For convenience in estimating all of the terms in the kinetic equations (1.4) and in future calculations, we introduce the 

functions 
+ a a  

@,(x, c )  - ~r , s  f f h,(x, c)exp(-c~ - ~)c dcdc,  (1.9) 

where 
§ 

' "  f ) ( )de a = 1, a,, = ~ ,  • = ~-1/2 c exp ( - c  2: ~ c: . 
lln - -  c a  

(I.I0) 

We also introduce new functions for the partial macroscopic velocities and partial shear stress: 

~ U ( ' ~ )  -"'~ f ~ ( x ,  c)exp(-c~)ac, i = In, n, w(x) - • - "~ 

- | (1.11) 
§ 

�9 ",~Fm~ i : 

If  we neglect terms of order nm/n n, then the kinetic equations (1.4) for the excited and unexcited states are converted, 

using Eqs. (1.9)-(1.11), to 
8@,,, 1 

. - ~ o , , ~ . ) t  - 3 , @ , . ;  ( 1 . 1 2 )  c a x  2 + c~,,(1 - _(l~x... ~. )%, + 23, c ( i  - t3~ 

O@ 1 
- -~"=  - -  , (") 2 b c ( l  ~ Ox 2 + c) w + cS ,Ir w ' + 

-(~ -(~)'- (1.13) - v . . , ,  + ~ , , , , ) , .  + 2 ~ . , , g ~ " ~ , ) , ,  - ~ r  

The fact that the radiation intensity is uniform over the channel cross section, so that x does not depend on the x 

coordinate, is taken into account in Eqs. (1.12) and (1.13). 

The boundary conditions and symmetry conditions for the functions ~i, with allowance for Eqs. (1.6), (1.7), and (1.9), 

have the form 

@,(x= -T- 1 /2 ,  c~, ~ O) = (l - e,)~,(x = -T- 1 / 2 , , "  X 0); (1.14) 

@,(x = T- 1 / 2 , c  ~ 0) = @(x = _+ 1 /2 ,  c ~t 0). ( 1 . 1 5 )  
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In (1.14) we allowed for the fact that the first term on the right side of Eq. (1.6) makes no contribution to the macroscopic 

gas flux and therefore can be omitted. 
We introduce the dimensionless quantity G, related to the macroscopic gas flux (1.8) by 

2.~ i/2j 
G - - - - c , ,  + c ,  

~r<r, d (1.16) 
+1/2 +~o 

G = 2 f dx f cxp(-c'),P,(x,, c) ,  i = m, n 
-',/2 -= 

(n = n n + n m is the total number of molecules per unit volume). 

It is well known that the accommodation coefficients for gas motion in capillaries are close to unity [9], while the 

relative difference between the effective diameters of the excited (am) and unexcited (a n) particles is small [i0], i.e., 

( 1 - - e l )  < <  1, Ao/% < <  1, A a =  a m - a  n . (1.17) 

The additional introduction of the small parameters (1.17) into the theory, after the appropriate linearization of the 

problem, enables us to separate the surface and collisional BLID mechanisms. The functions characterizing the velocity profile 

and the gas flow rate averaged over the channel cross section are converted to 

~,6 r 
w(x) = w~(x)Ae + w2fx ) ~, ,.~c = e,,- ~,,,, 

Act 

G = GiAe + G 2"~, 
(1.18) 

The kinetic coefficients G 1 and G2, characterizing the contributions of the surface and collisional mechanisms, 
respectively, to BLID, depend only on the rarefaction parameter 5a =- 5" Allowance for Eqs. (1.17) thus led to a considerable 

reduction in the number of calculation parameters to be given and thereby to a decrease in the volume of calculations. 

Because of the inequalities (1.17) and n m << n n, we have 

dtra Y,-,~ ~ AO" 1 
0 -  ~n - e , ~  - ~ "" 1 + 7 " ~ ' ~ = 2  (r + ~ ) ' S n -  b" (1.19) 

If the effective frequency of collisions of the n - n  type is chosen in the form "Ynn = p/r/by analogy with the BGK 
model, and the viscosity coefficient is set equal to ~7 = p~717r -1/2 (l is the mean free path of molecules in the gas), then the 

rarefaction parameter di is related to the Knudsen number Kn = //d by the equation 5 = ~rl/2/(2Kn). 
For any values of the parameters P/(kB~7) and f~/(kB~7), the quantity x in (1.10) can be expressed in terms of the plasma 

function [11], while in the cases of nonuniform expansion (P << kBO) and uniform expansion (F >> kB0), it has the form 
2 

4 1 "  , ( I n [ ,  F) :~ k~. (1.20) 

Thus, solving the kinetic equations (1.12) and (1.13) with allowance for the boundary conditions (1.14) and the 

symmetry conditions (1.15) makes it possible to determine the surface component (w 1, G1) and the collisional component 

(w 2, G2) of BLID as a function of the rarefaction parameter & 
2. Method of Discrete Ordinates (MDO). This method is based on the fact that the molecular velocity space is 

assumed to be discrete, i.e., it is assumed that the gas molecules can move only with certain luted velocities. The set of 

discrete molecular velocities forms the nodes of the calculation grid. 
Each of the equations (1.12) and (1.13) is approximated by a system of kinetic equations corresponding to the nodes 

Cxq of the calculation grid in velocity space. To solve those equations, in turn, we use a finite difference method in which 
partial derivatives with respect to the x coordinate are replaced by finite differences. As a result, we have calculation grids 

with nodes exq (q = 1, 2 . . . . .  N c) in velocity space and one with nodes x k (k = 0, 1, 2 . . . . .  N x) in configuration space. The 

equations are then solved by successive approximations (iterations). The approximation order is denoted by the index p. 
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form 

where 

For a molecular model of rigid spheres, we obtain difference schemes that approximate Eqs. (1.12) and (1.13) in the 

C 
x q  A x  2 3 xq ,,,k j , 

2 * 2  -- dP~:k-I + C3<I)~0 1 [.[.OW@_l} - __Cq/~m~.l}O] 
c = - -  + 6 [ 6  mk ' ~q Ax 2 3 ] 

N e 

(p) w~) = x-v'2 E @~ (x,:cq)exp(-~q)As i = n, m, 
q 

N e 

Za ,,~t xk ' Cxq)eXp(--~q)cqAc fi 
q 

(2.1) 

q,(p) 
ikq 

calculation grid. 

The boundary conditions (1.14) are transformed as follows: 

@~'(x = -T- 1 /2 ,  c q ~ 0) = (I - e,)qb~ -~) (x = -T-l/2, Cxq 

i = n , m .  

(2.2) 

= Si(Xk, Cxq ) in the p-th approximation (i = n. m); Ax and Ac x are the lengths of the partition segments of the respective 

X 0), (2.3) 

It is seen from (2.1) that the perturbations of the distributions of m- and n-particles at the point (Cxq, Xk) are the 

functions 
cD ~') = F (tl)q') ',v~ ~1, t~  ),-1) 

m k  m \  ,n,k - 1 ~ 

Taking certain (arbitrary, generally speaking) profiles of  the macroscopic velocity and the stress tensor in the zeroth 

approximation (p = 0), and specifying the boundary conditions (2.3) at the surface, we can obtain the values of  the 

perturbations #n and 'brn in any pth approximation at all nodes Xk: 

~(P~ C ra.k- t xq 
+ --~- + 6Ax w~_~)O _ 2 

, "J' 3 rq ) 

tip q') C 
n , k -  I xq 

qq + Ax60 

5 2 OCxq t,,~ ) Ax  ( ~ 1) + Ow~-~} + - --2 + 6Ax w~,- ~ .~ 0,-I) 

c + Ax6 
xq  

(2.4) 

The iterations are continued until the difference between the perturbations in the (p - -  1)-th and p-th approximations 

becomes less than some value specified in advance. The iteration accuracy in the present work was set at 10 -6.  

For the zeroth approximation we chose the equilibrium state of the gas, in which 

w~ } = O, t(~ = O, i = m, n , k  = 0 . . . . .  NL 
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T A B L E  1 

a MDO IMM IDMM 

G1 G 2,10-1 G1 G 2,10-1 G 1 G 2,10-1 

0,01 
0,04 
0,1 
0,4 

1 
2 
3 
4 
5 
6 
10 
15 
20 

8,006 
5,633 
4,248 
2,475 
1,536 

-8,  623 
-7,091 
-5,438 
-2,187 
-0,115 

8,016 
5,634 
4,227 
2,410 
1,441 

-8,687 
-7,091 
-5,441 
-2,222 
-0,220 

8,016 
5,634 
4,227 
2,410 
1,441 

-8,686 
-7,091 
-5,441 
-2,222 
-0,220 

0,962 
0,694 
0,539 
0,438 
0,368 
0,223 
0,150 
0,114 

0,886 
1,127 
I,IL1 
1,105 
1,037 
0,775 
0,576 
0,450 

0,868 
0,614 
0,472 
0,382 
0,321 
0,196 
0,133 
0,101 

0,711 
0,931 
0,956 
0,918 
0,860 
0,642 
0,468 
0,365 

0,868 
0,613 
0,470 
0,380 
0,318 
0,191 
0,126 
0,094 

0,713 
0,935 
0,963 
0,928 
0,874 
0,666 
0,498 
0,397 

We considered the range [ - 5 ;  5] of dimensionless molecular velocities c x. Terms with [ c x I > 5 make no significant 

contribution to (2.2). We used uniform and nonuniform grids in velocity space. The number of grid nodes was chosen so that 

increasing it changes the calculation result by no more than 0. i%. A uniform grid in velocity space was used for calculations 
with 5 < 0.1 and it contained N c = 1000 nodes. A nonuniform grid consisting of 11 Gaussian nodes was convenient for 
calculations with ~ >  0.1. The segment [ - 1 / 2 ;  0] along the x axis was divided into N x = 200 parts for r < 0.I and into 
N x = 300 parts for (5 >_ 0.1. 

We first calculated the values of the perturbation functions at nodes x k of configuration space. Then from Eqs. (2.2) 
we found the profiles of  macroscopic quantities, as well as the velocity averaged over the cross section. 

In Figs. 1 and 2 we show BLID velocity profiles for different rarefaction parameters ~n" The results of  a calculation 

of G 1 and G 2 in Eq.  (1.8) are given in Table 1. 

3. Integral-Moment Method (IMM). Its essence consists in transforming the approximating kinetic equations into 
a closed system of integral equations for the moments of the distribution functions. 

Equations (1.12) and (1.13), with allowance for the boundary conditions ( I .  14) and the symmetry conditions (1.15), 

are written in integral form, and are then transformed, using Eqs. (1.11), into a closed system of four integral equations for 

the partial velocities w i and stresses t i [12]: 

+I/2 

w~(x) = f IA,(s)Ku(x,  s) + B,(s)K~(x, s) lds;  (3.1) 
-1./2 

+v2 

t~(x) = f [A,(s)K~,(x, s) + B,(s)K~(x,  s)]ds,  i - m,  n. (3.2)" 
-i/2 

Here 

for (1 - -  el) <<  1 we have 
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K~,(x, s) = /_,(z,) + (1 - ~,)If_,(%) + I ~(~)1, 

K~(x, s) = Io(Z/)sign(x - s) + (1 - e ) l lo(zu)  + Io(z~)], 

K~(x,  s) = Xl(zi) + (1 - e,)111(zu) + Ii(z~) l, 

z = 6 i l x -  s[ ,  z u = 3 , ( x -  s + 1), z , , = 6 i ( s - x +  1), 



The integral equations (3.1) and (3.2), of the second Fredholm type, can be solved by the Bubnov-Galerkin method 

[13]. In contrast to the MDO, it does not enable one to calculate profiles of velocity and stress, but with a felicitous choice 

of the test functions for the macroscopic parameters, it provides rapid convergence and satisfactory accuracy for the gas flow 

rate averaged over the channel cross section for any Kn. 
The free terms in Eqs. (3.1) and (3.2) include the free-molecule values (Kn >> 1) of  the velocity and stress. We 

therefore choose test functions that follow from the form of the macroscopic parameters in the hydrodynamic regime 

(Kn << 1): 

~ ( x )  = al,  + a~.': 2, T(x)  = a3,x, i =  m , n  (3.3) 

(aki are unknown constants). 
Substituting Eqs. (3.3) into Eqs. (3.1) and (3.2) and requiring that the resulting expressions be orthogonal to each of 

the base functions [1 and x 2 for (3.1) and x for (3.2)], we obtain a system of algebraic equations for determining the constants 

ali, a2i, and a3i. Here the condition of orthogonality of two arbitrary functions f and g has the form 

+ 1/2 

( f ,  g) = f f (x)g(x)dx  = O. 
- : / 2  

If  the constants aki are known, then the dimensionless gas flow rate is determined, with allowance for Eqs. (1.11), 

(1.16), and (3.3), from the expression 

G = G,,, + G ,  Gi = 2.~ ;/2 ali + , i =  m ,  n.  (3.4) 

Linearizing the resulting system of algebraic equations with respect to the small parameters (1.17), we find expressions 

for the kinetic coefficients G 1 and G 2 in (1.18). 
Analytical expressions for G t and G 2 can be obtained only for large and small Kn. 

1. Nearly free-molecule regime (Kn >> 1): 

G 1 = - 2 1 n b ,  G, = - 1 .  (3.5) 

The fact that collisional BLID turns out not to vanish as ~ --, 0 is a consequence of the degenerate geometry of the problem 

(an infmitely wide channel). In fact, for total accommodation as ~ --, 0, the partial fluxes of  unexcited and excited particles 

increase logarithmically without reaching the free-molecule values: 

Y, , -  Ind,,,, Y -- - lnc~,,, = - In3,, - InO = - lnc3, - A a , / c r , .  

In summing the partial fluxes, the main terms of  order In ~n are retained and the collisional BLID turns out not to vanish. It 

is obvious that in the case of an actual channel geometry, such as for a cylindrical capillary [14], collisional BLID in the free- 

molecule regime will be absent. 
2. Hydrodynamic regime with slippage (Kn << 1) for the model of rigid spherical molecules: 

6~rt/2 9:tl/2 

G I -  5c~ ' G2 - 2 0 6 "  ( 3 . 6 )  

Numerical values of the kinetic coefficients G 1 and G 2 in the intermediate regime for the molecular model of  rigid 

spheres are given in Table 1. 
4. Iategrodifferential-Moment Method 0B)MM). The main difference from the IMM is that the profiles of partial 

velocities of the fluxes of  excited and unexcited particles are described by the integral equations (3.1), while differential 

equations of transfer of the z component of the momentum must be obtained for the stress. 
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Multiplying Eqs. (1.12) and (1.13) by exp(-c2)/lrl/2 and integrating the resulting expressions over molecular velocity 

dc x, with allowance for Eqs. (1.11) we have 
a t  1 

- ~ m ~ ' ~ ;  
~x 2 (4.1) 

a t  1 
- + d) ~ o ( l ) w  . 

ax 2 . . . .  (4.2) 

Note that the law of conservation of momentum, t m + t n = 0, follows from (4.1) and (4.2), i.e., the total shear-stress 
tensor vanishes. 

The integral equations (3.1) and the differential equations (4.1) and (4.2) thus form a closed system determining the 
partial velocity wi(x) and partial stress ti(x). 

In such an approach, using the Bubnov-Galerkin method, it is sufficient to approximate only the velocities wi(x), while 

the stress is determined from (4.1) and (4.2). If Eqs. (3.3) are taken as the test functions for wi(x), then, integrating (4.1) and 
(4.2) with allowance for the fact that there is no stress at the channel axis [ti(x = 0) = 0], we obtain 

I tx) .~az,,x 3. (4.3) =-F= -~,so :,1. x+ 

Substituting the approximations (3.3) for wi(x ) and (4.3) for ti(x) into the integral equations (3. I) and requiring that 

the resulting expressions be orthogonal to each base function (i, x2), we obtain a system of algebraic equations for the four 

unknown constants ali and a2i (instead of the six in the IMM). 

The quantity G, characterizing the gas flow rate, is determined from Eqs. (3.4). 

The results of a numerical calculation of the kinetic coefficients G I and G 2 for different rarefaction parameters 6 in 

the molecular model of rigid spheres are given in Table 1. 

The analytical expressions for G I and G 2 in the free-molecule regime coincide with (3.5), while in the hydrodynamic 
regime with slippage, in the model of rigid spherical molecules, they have the form 

G, (- "~ 35"~--T/2)~-, G 2 = ~ + ' ~ - ) ~ ' -  (4.4) 

A comparison of (4.4) with (3.6) yields a discrepancy of 18% for G 1 and 21% for G 2. 

5. Discussion. In Table 1 we give the results of the numerical calculation of the kinetic coefficients G I and G 2 for 

intermediate rarefaction parameters 5 by three methods: the MDO, IMM, and IDMM. The error in calculations by the MDO 
was less than 1%, which enables us to use those results to evaluate the accuracy of calculations by the IMM and IDMM. The 

main advantage of the latter two methods consists in the fact that they do not re.quire calculations of local values of the 

macroscopic parameters. The IMM and IDMM are therefore more economical and require considerably less computer time 
than the MDO. At the same time, their accuracy depends on the choice of the approximating expressions for the macroscopic 
parameters [for the partial velocities and partial shear stress (3.3)]. 

It follows from Table 1 that the results obtained by the different methods are in satisfactory agreement for 8 _< 1. For 

intermediate values of the rarefaction parameter 8, however, the maximum error of the IMM and IDMM results is about 20%. 
Reducing this error requires the use of a higher approximation of the Bubnov-Galerkin method to solve the system of 

integral-moment equations (3.1), (3.2). The approximating expressions (3.3) for the partial velocities ~i, in particular, must 

be supplemented by a3i x4 terms. 
The direction of the BLID surface component is determined by the signs of the difference between the accommodation 

coefficients of the unexcited and excited particles, Ae = e n - -  8m, and the dettming of the radiation frequency from the center 

of the absorption line, 0 = co - -  COrn n. If Ae > 0, then the direction of the BLID surface component for fI > 0 coincides with 

the radiation direction, while for f~ < 0 they are opposite. 

It is seen from Table 1 that G 1 decreases monotonically in the transition from the free-molecule to the hydrodynamic 
regime. Such behavior is explained by the fact that the relative number of particles colliding with the channel walls decreases 
with increasing rarefaction 8. This weakens the role of the walls as a buffer, and G 1 decreases. 
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The dependence of the kinetic coefficient G 2, characterizing collisional BLID, on 6 is nonmonotonic. That dependence 

has a maximum at 6 = 4, while G 2 changes sign at 6 -- 2. This means that the direction of the BLID collisional component 
is determined not only by the signs of fl and Aa/tr but also by the gas pressure in the channel. 

The following is a possible reason for such a dependence of the function G 2 = G2m + G2n on Kn. The components 

G2m and G2n for excited and unexcited particles are sign-constant functions of the Knudsen number, with G2m < 0 and 

G2n > 0. In the hydrodynamic regime, G2m and G2n are determined by kinetic processes in the Knudsen wall layer. The 
effective thickness of the Knudsen layer is greater for particles with a smaller collision cross section, such as those in the 

ground n-state. The flux Jn therefore encounters less channel resistance and ] G2n ] > [ G2m [ . With decreasing pressure, 

the thickness of the Knudsen layer increasesand I G2n ] and ] G2m [ increase, reaching maxima in the intermediate regime. 

A further pressure decrease leads to weakening of the BLID collisional mechanism itself, i.e., a decrease in ] G2m ] and 

[ G2m [ , with G2n { decreasing faster. As a result, at some 6 the macroscopic, oppositely directed fluxes of excited and 
unexcited particles turn out to be equal in magnitude. When this happens, the sign of G 2 changes. Then [ G2n [ < [ G2m [ 

with increasing Knudsen number, i.e., G 2 < 0. 

In Figs. 1 and 2 we give profiles of the dimensionless macroscopic velocities w: and w 2. It is seen (Fig. 1) that the 
BLID surface component w 1 at 6 _> 1 hardly depends on the transverse coordinate. This suggests that the gas viscosity does 

not significantly affect the BLID surface component. We also note that at 6 _< 0.1, the gas velocity w 1 is higher near the walls 

of the channel than at its axis. 

The evolution of the profile of the velocity w 2 of the BLID collisional component with increasing rarefaction 6 (Fig. 
2) is interesting. So long as the rarefaction parameter is small, w 2 depends little on x. With increasing 6, the structure of the 

BLID flux becomes more complicated. A stream "core" moving in one direction is isolated near the channel axis while the 
part of the gas in the wall layer is moving in the opposite direction. The presence of counterflow is due to the fact that at 

intermediate 6, the flux of excited particles in the wall region is larger than the flux of unexcited particles, and vice versa near 
the axis. In the nearly free-molecule regime at 6 _ 0.1, the gas velocity w 2 is in the opposite direction to the wave vector 
k. In the hydrodynamic regime at t5 > 10, the direction of w 2 coincides with that of k and w 2 increases with distance from 

the wall. The gas viscosity thus affects the BLID collisional velocity component w 2 at 6 > 10 in the wall layer. 

The research described in this publication was made possible in part by Grant NRG 4000 from the International Science 

Foundation. 
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